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Abstract- This paper presents a numerical scheme specially developed for 2-D and 3-D vis­
coelastodynamie fracture problems. The method. referred to as the spectral scheme. is derived from
a spectral form of the viscoelastodynamic boundary integral relation between the traction stresses
acting on the fracture plane and the corresponding displacement discontinuities. It accommodates
planar cracks of arbitrary shapes embedded in an infinite homogeneous viscoelastic medium and
subjected to an arbitrary combination of time- and space-varying tensile and shear loading. A wide
range of cohesive models can be incorporated to characterize the failure process taking place in the
vicinity of the spontaneously propagating crack tip. Various viscoelastic dynamic fracture problems
involving stationary and spontaneously propagating cracks arc presented, including a study of the
material-induced dissipative effect on the propagation of transient surface waves, and an inves­
tigation of the effects of a simple rate-dependent cohesive failure model on spontaneous crack
propagation in elastic and viscoelastic materials. ,( 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Due to the complexity of the constitutive relations needed to capture the time-dependent
response and failure process of viscoelastic materials, numerical techniques are often
required to investigate the failure mechanics of this class of materials. Among the com­
putational methods used for viscoelastic fracture problems, the finite element method
(FEM) is the most common (Warby et al., 1992; Masuero and Creus, 1993; Duong and
Knauss. 1995) but seems to have been used mainly in quasi-static situations. Another type
of numerical technique has been recently introduced by Georgiadis and co-workers (1991),
Georgiadis (1993) to investigate a series of dynamic fracture problems involving cracks
embedded in a viscoelastic medium. Their method, which is based on a combination of
integral transforms and numerical Laplace inversions, has been used to determine vis­
coelastic effects on the dynamic stress intensity factor associated with sudden loading of
non-moving cracks in simple geometrical settings (linear or penny-shape cracks).

The objective of this work is to develop and implement an efficient numerical scheme
able to accurately simulate a wide range of 2-D and 3-D viscoelastodynamic fracture
problems involving planar stationary or spontaneously propagating cracks of arbitrary
shapes subjected to arbitrary space- and time-varying loading conditions. The spectral
method described hereafter is a special form of the viscoelastodynamic boundary integral
relation between the stresses and the displacement appearing on the fracture plane. It is
based on a 3-D spectral formulation obtained by Geubelle and Rice (1995) in the linearly
elastic case. While conceptually similar, the elastic and viscoelastic spectral schemes present
some important differences which have been emphasized in a recent paper by Geubelle et
at. (1998) in the simpler scalar framework of anti-plane shear (Mode III) loading. That
preliminary paper, which also provides a review of previous analytical work on vis­
coelastodynamic fracture mechanics, is now extended to 2-D in-plane (Modes I and II) and
fully 3-D situations.
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The present paper is organized as follows: The spectral formulation is first summarized
in Section 2. Then, the classical 2-D problem of a tensile line load suddenly applied on a
viscoelastic half space is solved in Section 3 to illustrate the material-induced dissipative
effect on the propagation of transient surface waves. In Section 4, the spectral method is
used to simulate sudden Mode I loadings of 2-D and 3-D stationary cracks in a standard
linear viscoelastic solid. Finally, a simple rate-dependent cohesive model is used in the
simulation of spontaneously propagating and arresting 2-D tensile cracks in Section 5.

2. FORMULATION OF THE VISCOELASTODYl\;AMIC SPECTRAL SCHEME

The spectral scheme described in this paper has been developed to investigate fracture
problems similar to that schematically represented in Fig. 1. A planar crack or fault of
arbitrary shape occupies a portion of the plane X 2 = 0 (referred to as the fracture plane)
and is embedded in an infinite homogeneous viscoelastic medium, the constitutive relations
of which can be expressed in the conventional differential form :

(I)

where (5u and BU are the stresses and infinitesimal strains, respectively; ,1' and .J! are
nondimensional ratios of differential operator sums containing various orders of D = a/Of;
;'0 and 110 are the (instantaneous) elastic Lame constants; iJ il is the Kronecker delta. Under
the effect of arbitrary space- and time-varying tensile and/or shear loads, the crack expands
spontaneously on its original plane.

As mentioned earlier, the spectral scheme consists in a special form of the boundary
integral formulation of the viscoelastodynamic relations between the traction stresses
1'/'1' x" f) = (52/(X" X2 = O. x" I) acting on the fracture plane and the corresponding dis­
placement discontinuities (or crack opening displacement COD) ()j(x 1, x" t) defined as

where uj denote the displacement components. The final form of the viscoelastodynamic
relations to be derived hereafter will be somewhat different from that obtained in the
linearly elastic situation (Geubelle and Rice, 1995) and will be written as

where T~ are externally applied traction stresses and the dot denotes differentiation with

homogeneous
viscoelastic

medium

arbitrary combination of
tensile and shear loading

on the fracture plane

planar crack or fault
of arbitrary shape

stationary or moving
spontaneously

Fig. I. Geometry of the 3-D elastodynamic fracture problem.
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respect to time. The term V/kjk corresponds to the instantaneous "radiation" term and
involves the instantaneous (elastic) properties of the material. The next term (W/kb k ) is
characteristic of the viscoelastic problem and vanishes in the elastic limit. FinallY,.I1 is the
convolution term which will be expressed in the spectral (Fourier) domain as a time
convolution over the past crack opening displacement (COD) history. The convolution
term will account for both the elastodynamic and viscoelastic hereditary effects and will be
quite different from its elastic counterpart. The fundamental differences between the two
cases are similar to those emphasized in the simpler 2-D Mode III case (Geubelle et al.,
1998) and involve a strong dependence of the convolution on the spectral mode number,
especially in the vicinity of the origin, and a non-vanishing contribution of the constant
spectral mode to the convolution. Following the procedure used in the elastic situation, we
start by considering the two 2-D in-plane fracture modes (Modes I and II) before moving
on to the fully 3-D problem. Since the derivation steps are somewhat similar to those
described in Geubelle and Rice (1995) for the elastic problem, the following presentation
is limited to the most essential relations.

2.1. Two-dimensional in-plane fracture modes
We first assume that the solution is independent of x 1 . The in-plane displacement

components u,(x/1, t) can be expressed as

where the potentials ¢ and t/J satisfy the equations

in which

(2)

J lco~V(D)+2Ilo·4·{(D) J

[c,,(D)]' = .._~--~- = c.lol(D),
P

(3)

In (3), p is the density; c"o = (Uo +2Ito)/p) l~ and Cd) = (lto/p) 1 2 are the elastic (instantaneous)
dilatational and shear wave speeds, respectively; leD) is a linear combination of j{ and
.. f", the two nondimensional ratios of differential operators introduced in (I):

(4)

To solve the viscoelastic wave eqns (2), we consider a particular spectral term:

[¢(x" t), t/J(x" t)] = eiqx,
[<I>(x~, t; q), 'P(X2' t; q)],

and take the Laplace transform of the Fourier coefficients, as in

$(x 2 ,p; q) = fr e-I"<I>(xc. I; q) dl.
Jo

Substitution into (2) yields

where
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In the latter, the complex square root is chosen to have a non-negative real part, while cip)
and cJp) are the Laplace transforms ofthe dilatational and shear wave speeds, respectively:

(5)

The time dependences of the wave speeds are the main difference between the derivation of
the spectral formulation in the viscoelastic and elastic cases. The remaining initial steps are
similar, and lead to the following relations between the traction stresses on the fracture
plane and the associated displacement discontinuities (see Geubelle and Rice, 1995 for
details) :

f
l
(p; q) = _ ~_o::~~elI4as(p; :)~.'d.(P; q) -,~l +.a;(p; q»2J 15

1
(p; q),

- L rtJp,q)(l-rx, (p,q»

f
2
(p; q) = - {t()'/~(e2J~?'(P; ,q)&d.(P; q) -,~I+.:<~(l!iq»2J 15

2
(p; q), (6)

L rx<!Cp,q)(I-rx, (p,q»

where T,(t; q) and D,(t; q) are the Fourier coefficients of the traction stresses and crack
opening displacements, respectively, defined by

[,,(Xl, t), ()x(.~I' t)] = [Tx(t; q), D,(t; q)] eil{\I,

At this point, we extract the instantaneous response:

which, in the Laplace/Fourier domain, transforms (6) into

Back in the time domain, the latter yield

(8)

where the externally applied stresses ,~ have been added. The convolution term]~ are
expressed in the Fourier domain as
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where the convolution kernels R~"E(T) are the inverse Laplace transforms of the square­
bracketed terms in (7) written in terms of the nondimensional variable s = pj(lqlc,o).

Unlike in the elastic case, the convolution kernel R;"E(T) has a nonvanishing limit for
large values of s in the Laplace domain, and, to adequately capture the behavior of the
convolution kernel at the origin, we must define an alternative form of the kernel C;'E(T)
by

Equation (9) then becomes (no sum on Cl)

F ( , ) = - t~?l1lRf D (t' )_ !lolq! fl.
y t,q 2" ,q 2 _

As will become apparent later, R;' is inversely proportional to Iql c,or*, where i* is the
reference relaxation time parameter characterizing the time dependence of the viscoelastic
material, and the proportionality factor depends on the material model used. C:'E(T)
(= Ct;E(T)) and CI?(T) (= CrE(T)) constitute the Mode II and Mode I viscoelastodynamic
convolution kernels for the spectral scheme, respectively. The presence of the non­
dimensional viscoelastic response operators ,JI and f2 [explicitly and through 'l.d and a, in
(7)] render the Laplace domain expression of the kernels very complicated. For most cases,
the inversion must be preformed numerically using, for example, the DAC technique
(Dubner and Abate, 1968; Crump, 1976).

In the remainder of this presentation, we will focus on the simple Standard Linear
Solid (SLS) model for which

~ p+ Ilf ".
.A(p) = p+(1 +O/f = A' (p), (l0)

where r is the unique relaxation time parameter, and ~ = !lol!lf. - I characterizes the change
in elastic properties from the instantaneous shear modulus!lo to the fully relaxed value !lvc'

This model, which assumes the moduli to be synchronous (i.e., Poisson's ratio v is constant),
is clearly oversimplified (Hilton, 1996; Hilton and Yi, 1997). It is, however, particularly
attractive in a preliminary investigation of the viscoelastic effects by qualitatively capturing
a wide range of phenomena with the aid of only two parameters (r and n The spectral
formulation in the more general situation involving a Prony series representation of the
material response is presented in Appendix A.

For the SLS class of materials, the convolution kernels take the formr::--:--.----
C~E = C~E(T; b,~, h) where 17 = l/lc/le,or and h = CdO/C,() = V2(1 - v)j(l- 2v). In other
words, the dependence of the convolution kernels on the time constant i, which is a
main characteristic of the viscoelastodynamic spectral formulation, can be cast in the
nondimensional parameter h. The Laplace domain expressions of the convolution kernels
C ~E for the SLS model are given in Appendix B and the kernels are presented in the time
domain in Fig. 2(a-d) for two values of ~ and for h = jj (which corresponds to v = 0.25).

The basic characteristics of the Mode I and II kernels are similar to those observed for
the Mode III kernel (Geubelle et al., 1998). As 17 becomes very small, the viscoelastic
convolution kernels C~'E approach their elastic counterparts C;:'L derived in GeubelJe and
Rice (1995) as
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CjE(T;b)

-2 log (b)

log (b)

Fig. 2. Viscoelastodynamic convolution kernel: (a) Mode I kernel for ~ = I ; (b) Mode I kernel for
~ = 10; (c) Mode II kernel for ~ = 1; id) Mode II kernel for'; = 10.
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o J 1(hT) 1 h 4 ( )= Ir-~-- +4T[W(T)- W(hT)]+(4h-h)Jo( T)- JoT,
T

11'm CVE(T' b l' h) = CEL(T' h)
h-O II ,,~, . II '.

J (T) 4
= ~~~ +471W(hT)- W(T)]-j'/o(hT)+3Jo(T),

where Jo and J 1 are Bessel functions and W(T) = 1- S6 J] (x)/xdx. Also, just as in the
Mode II1 case, for large values of b, the kernels show a severe drop near the origin T = 0,
where they take the value

VE 2 (3~ 1) (8 -h
2
)hC "( T = 0 . b j; h) = hb j; - + - + -----.-- - 4

I , ,<" <, 8 2 2 '

The value at the origin becomes unbounded as b --> 00, i.e., as rand/or q tend to zero. This
requires special treatment of the constant mode (q = 0) which, unlike in the elastic case,
contributes to the convolution term. Following the procedure used in Geubelle et al. (1996),
the constant (or zeroth) spectral mode contribution to the term];' in (8) is expressed as

-. flo ~ . flo i' VE (t') 1 • d(F (t 0) = "----.-- D (t 0) - --- C- D (t- t 0) -_.], 4 -], 2 - 0 - 1 '-'c,or c,or 0 r r

-. hflo~ . hflo i' 'VE(t') I. dt'F (t 0) = .... -.-_ .. D (t 0) - '--.-- C - D (t- t 0)-2, 4 - 2, 2 - 0 - 2 , -,
C,0 r (\0 r 0 r r

where the constant mode convolution kernel, given by

is the same for all three fracture modes and is shown in Fig. 3 for different values of~.

Recalling at this point the anti-plane shear formulation obtained in Geubelle et at.
(1998), we can summarize the 2-D viscoelastodynamic spectral formulation for the SLS
class of materials as

where Vjk and W jk are diagonal matrices:

(12)

[Vu] = 2
flo

diag [1, h, 1],
Cd)

[Wi,] = -4flO~_diag[l,h, 1],
c"or

(13)

and where the remaining convolution terms/Xx], t) are expressed in the Fourier domain as
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~ = I (displacement form.)

(velocity form.)
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T
Fig. 3. Constant mode convolution kernel for the displacement and velocity formulations. for two

values of ;.

F..( .) = - J10 Iql f.'./ f, q 2

(no sum onj)

J10 f' (t') dt'F(t·O) = -h----- C IE
- D(f-t'·O)-

I , J 2c,of_ J. 0 f / 'f

(14)

In the latter, hi = h, = 1, h2 = h = c,/Ole,o. The convolution kernels for the non-zero
spectral modes are obtained by inverting the Laplace transform expressions listed in Appen­
dix B, while the constant mode kernel is given by (11). It is worth noting once again that
both the additional term Wik(jk appearing in (12) and the constant mode convolution
contribution Fj(f; 0) in (14) vanish in the elastic limit for which ~ --+ 0 andlor T --+ ro.

The spectral formulation (12)-(14) involves a convolution over the past displacement
history and is, therefore, referred to as the displacement formulation. An equivalent
expression can be obtained that is based on a convolution over the past velocity history.
The so-called velocity formulation is derived by integrating (14) by parts to yield

(15)

where the convolution term 9/ is now expressed in the Fourier domain as

G ( . ) - J10lql D (.. ) J10lql I' WVE(I I' ')D' ( ")d'j f,q - --?-r i j f,q +--2- i qCsof j f-f,q f,
- 0

(no sum onj)

(16)

with
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W;lo(T) =re;l(ndF,

r =r,=-~-(I-~)
I - ~ + I 172 '

I

I+C

The convolution kernel for the constant mode W~'J'(T) is represented in Fig. 3 for two
values of ~. It is worth noting that the additional term W/k(jk appearing in the vis­
coelastodynamic displacement-based spectral formulation (12) disappears from the vel­
ocity-based relation (15). Note also that the term extracted from the convolution integral
in (l6a) corresponds to the static long-time limit based on the fully relaxed material
properties (recall that 110/(1 +0 = liJ·

The remainder of this section describes the 3-D formulation for the displacement­
based spectral scheme; similar relations can be obtained for the corresponding 3-D velocity
formulation.

2.2. Three-dimel1siol1alformulatiol1
As described in Geubelle and Rice (1995), the 3-D spectral formulation used to solve

dynamic fracture problems similar to that depicted in Fig. I can easily be derived from the
2-D case by reinstating the xl-dependence of the variables and by replacing the mode
number Cf in (2.14) by a mode vector q = (k, m) spanning the fracture plane:

The 3-D formulation of the viscoelastodynamic relations (12)--(14) is then obtained by a
simple rotation about the xz-axis (see Fig. 3 in Geubelle and Rice (1995) for details). Unlike
in the bimaterial case characterized by an intrinsic combination of the three fracture modes
(Breitenfeld and Geubelle, 1997), the present homogeneous situation presents a decoupling
between the tensile mode (Mode I), which generates a crack opening displacement in the
x2-direction only «(j2 i= 0, iii = (j) = 0), and the shear-dominated modes (Modes II and III)
which create displacement discontinuities parallel to the crack plane (iii and (5) i= 0, (j2 = 0).
Following the procedure delineated in Geubelle and Rice (1995), the 3-D spectral dis­
placement-based formulation in the viscoelastic tensile case is, for the SLS class of materials,

where

e Il:(qc,o t')D2(t- t' ; k, m)qc,o dt',

flo f'F,(t·O 0) = -17---,--- , , ')-
~c,o r _

• Vic (t') '. d((of D2 (t-t ,0,0)f' (18)

with q = J k2 +m 2
, ell given in Appendix Band e!/ expressed in (II).

In the shear case, the 3-D spectral formulation becomes
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with

(j=land3) (19)

{
F I (t; k, m)}
F,(t;k,m) =

flo [ m
2

2q -km

k.k'/~_1l fl, '' {D I (t - t' ; k, m~}, C!/(qc,o() " qc,o dt'
D,(t-t ;k,m)

F(t· 0 0) = _i~,I)_ fl cf/ (() D(t - (' . 0 (» 9~ (j = I and 3), (20)
J ' , 2c \0 f" f. f I ~'f '

where the two convolution kernels C!? and C!Jt are also listed in Appendix B. The
implementation of the spectral scheme is identical to that of the elastic case (Geubelle
and Rice, 1995): a rectangular portion (0 :::; XI :::; X; 0:::; X, :::; Z) of the fracture plane is
discretized by a K* M uniform grid on which the 2-D Fourier series is defined:

K 2 ,If 2 [ {k x: m x: }lI I, (T}IJ/(t) , DJIII(t), F1;1II(t)] exp 2ni __:_1 + ---~~ .
j( 211I 11'2 X Z

The Fourier coefficients are computed efficiently by a 2-D Fast Fourier Transform scheme.
Note that the computationally most expensive operation, the convolution over the past
COD history, is described by (18) and (20) for each individual spectral mode (k, m),
independently from the others. This unique aspect makes the spectral scheme particularly
attractive in a massively parallel computing environment, especially for distributed memory
architectures such as the CM-5 used in the present analysis; each spectral mode is assigned
to one processor and the inter-processor communication is limited to a minimum.

To complete the numerical scheme, two relations are still needed: Firstly, a time
stepping scheme must be used to obtain the displacement distribution from the velocity
solution. In the displacement formulation used in the remainder of this paper, we use a
simple and efficient explicit scheme

where the crack opening velocity 6/ is derived from (17) in the tensile case and (19) in the
shear situation. Secondly, a failure model must be introduced to simulate spontaneous
crack growth. The numerical scheme allows for a wide range of cohesive and/or friction
models: a simple rate-independent cohesive model was used in the Mode III viscoelastic
case (Geubelle ct al., 1998). In the last section of this paper, rate-dependence is incorporated
in the cohesive model in an analysis of spontaneous crack propagation of 2-D tensile cracks.
The implementation of the spectral scheme in the 3-D situation is very similar to that
described in the aforementioned 2-D Mode III paper and will not be repeated here.

The remainder of this paper presents some typical 2-D and 3-D applications of the
viscoelastodynamic spectral scheme under tensile (Mode I) loadings [eqns (17) and (18)],
starting with the classical 2-D problem of a tensile line load suddenly applied on a vis­
coelastic SLS half space.
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3. TENSILE LINE LOAD ON A VISCOELASTIC HALF SPACE

The existence and properties of Rayleigh waves in viscoelastic materials have been the
focus of various investigations over the past decades: through a detailed analysis of the
dispersion relation in the viscoelastic case, Currie et al. (1977) and Currie and O'Leary
(1978) have suggested that the surface waves appearing in viscoelastic media may be quite
different from their elastic counterparts. The main difference pertains to the possible
appearance of two surface waves: a quasi-elastic wave, traveling at a speed similar to that
of the elastic Rayleigh wave (i.e., slower than both the dilatational and shear waves), and
a purely viscoelastic wave, the speed of which may exceed that of the dilatational wave.
These purely viscoelastic waves were shown, however, to be incompatible with additional
physically motivated criteria associated with the behavior of harmonic surface waves at
infinity (Ivanov and Savoya, 1993).

In the first application of the spectral scheme, we investigate viscoelastic effects on the
propagation of transient surface waves generated by a tensile line load suddenly applied on
an SLS half space. This classical problem constitutes a numerically challenging test for the
spectral scheme since it is characterized by a highly concentrated applied load with non­
vanishing spectral content, by the presence of very different wave effects and, under certain
conditions, of singular velocity solutions. A portion X of the free surface is discretized by
1024 equally spaced grid points and a step point-load F is suddenly applied at t = 0 in the
middle of the domain of interest. The constant Poisson's ratio v is chosen as 0.25 and the
modulus ratio ( as I (i.e., /1" = /l0/2). To illustrate the transient viscoelastodynamic effects,
the evolution of the vertical velocity U2 of a surface point located at a distance L from the
point of application of the line load is presented in Fig. 4 for the elastic case (solid curve)
and five values of (',or (dashed curves). As expected, for large values of the relaxation time,
the material behaves almost elastically and the numerical values follow the analytical
(Lamb) solution characterized by a small downward motion at the arrival ofthe dilatational
wave (t = Llcdo), a change of slope at the arrival of the shear wave (t = L/c,o) and a
strong singularity associated with the Rayleigh wave (t = 1.088L/(\o). The small spurious
oscillations appearing before the arrival of the dilatational wave are due to the non­
vanishing spectral content of the spatially concentrated load (Geubelle and Rice, 1995).

4r-------,.-,,-------.-------,--------.

3

2

-1

-2

o

Elastic (Analytical) --­

CsoT _ 1600 -------------y-
0.32 ­

0.16

0.08

0.04 -

3 4

Fig. 4. Tensile line load on a viscoelastic half-space: normal velocity response U2 observed at a point
located at a distance L from the point of application of the load P. illustrating the effect of the

relaxation time i on the propagation of surface waves.
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As the ratio c,or/L of elastodynamic to viscoelastic time scales increases, the material
relaxation starts to playa more prominent role and strongly affects the motion of the free
surface. The most striking effect is associated with the damping of the singularity of the
Rayleigh wave, the arrival of which is shifted progressively to later times. In the limiting
case c,or -+ 0, the surface wave propagation will take place essentially in a fully relaxed
medium, and the Rayleigh wave will regain its "elastic singularity", as indicated by the
trend shown in Fig. 4. For the material combination used here «( = 1 and v = 0.25), its
arrival time will then be c,ot/L ~ 1.538. Finally, note the larger long-time velocity also
characteristic of the drop in elastic moduli.

4. SUDDEN TENSILE LOADING OF AN ELLIPTICAL CRACK

The classical 3-D problem of the sudden uniform Mode I loading of a stationary
elliptical crack embedded in a viscoelastic medium is now investigated. A square portion
(X = Z) of the fracture plane is discretized by a uniform 512 * 512 grid. The elliptical crack
is located at the center of the domain of interest, with the major axis parallel to the Xl-axis.
It has an aspect ratio of 3/2 and its major and minor axes are discretized by 192 and 128 grid
spacings, respectively. The pre-existing crack is prevented from propagating by assigning a
very high strength to the surrounding viscoelastic medium. The simulations were performed
using the SLS model, with a modulus ratio parameter ( = 1. As was the case in the previous
section, the time step size At was chosen as Ax/2c,o, where .Ax denotes the grid spacing.

The evolution of the crack opening displacement (COD) along the major axis
(x) = 2/2) of the elliptical crack is shown in Fig. 5(a) for the elastic case, and in Fig. 5(b)
and (c) for two viscoelastic situations with c,oi/X = 0.5 and 0.05, respectively. All three
cases present the overshoot characteristic of dynamic fracture problems: the COD reaches
a peak before settling down to the long time ellipsoidal deformed shape. The intensity of
the dynamic overshoot (i.e., the ratio of the peak value to the long-term one) is, however,
stronger in the elastic situation. As expected, since most of the complex transient effects are
associated with the propagation of Rayleigh waves along the crack surfaces, the reflecting
sharp wave fronts and the oscillations apparent in the elastic case (Fig. 5(a» quickly
disappear in the viscoelastic cases which present a smoother surface, especially in the fully
relaxed situation (Fig. 5(c)) where very little wave propagation can be detected. The first
viscoelastic case (Fig. 5(b» presents an intermediate situation for which the viscous effect
starts to playa major role after the first Rayleigh wave reflection. The transient effects are
then quickly damped out and the deformed crack shapes slowly approach the fully relaxed
limit.

The damping effect of the surrounding viscoelastic medium on the transient waves
propagating along the fracture surface can be better illustrated in Fig. 6, which presents
the evolution of the crack opening velocity ~2 computed at the center of a 2-D non-moving
crack of length 2a suddenly subjected to a uniform tensile loading. The properties of the
surrounding material are identical to those used in the 3-D problem described earlier. The
elastic case (solid curve) is characterized by a constant velocity until the arrival of the
dilatational wave, followed by the shear wave and the singular Rayleigh wave. After this
initial train of waves, the crack opening velocity quickly drops and oscillates around zero
until the quasi-static limit is achieved. For fairly large values of the relaxation time par­
ameter r (csor/2a ~ 2), the arrival of these waves is felt in a similar way. However, material
relaxation tends to damp their effect, especially after the second wave reflections from the
crack ends. For small values of i(c,or/2a :s; 0.2), the material relaxes before the arrival of
the first Rayleigh wave and the velocity response is much "smoother". Note once again the
shift of the time of arrival and the damping of the Rayleigh wave already mentioned in the
previous section.

5. PROPAGATING MODE I CRACK

In this final section, we present the results of a series of simulations of spontaneous
crack propagation and arrest in elastic and viscoelastic media under tensile loading
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Fig. 5. Evolution of the crack opening displacement along the major axis of a stationary elliptical
crack subjected to a sudden uniform tensile loading in the elastic case (a). for c,or!X = 0.5 (b). and

for c,,,riX = 0.05 (cl. showing the viscoelastic effect on the dynamic overshoot.

conditions. Of particular interest hereafter is the effect of the rate-dependence of the cohesive
failure model on the crack motion. The role of cohesive failure in dynamic fracture.
especially within the context of the spontaneous propagation of fast cracks. is a complex
and still poorly understood issue. Recently. Yang and Ravi-Chandar (1996) have performed
a detailed finite different analysis of the role of cohesive failure in the steady-state and
unsteady motion of Mode III cracks in linearly elastic materials. The cohesive model used
in their simulations involved a thin layer of uniform thickness placed ahead of the crack
and characterized by a rate-independent strain-based progressive failure model. They
emphasized in their conclusion the primordial role that the cohesive model plays on the
spontaneous crack motion. The preliminary investigation presented in this section aims at
complementing their work by introducing rate dependence in the failure model. The evol­
ution of the process zone for rapidly propagating cracks has also been the subject of another
numerical analysis by Johnson (1992) who used a simple cell model to characterize the
weakening behavior of the material in the process zone. Also related to the issue of process
zone modeling are the papers by Gurtin (1979) and Costanzo and Allen (1995). which
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Fig. 6. Evolution of the crack opening velocity 6, at the center of a 2-D crack of length 2a subjected
to a sudden uniform pressure Tn.

present a thermodynamics-based theoretical framework for elastic and viscoelastic cohesive
zone models.

As indicated earlier, the spectral scheme allows for the incorporation of a wide range
of cohesive models to characterize the failure process. In the preliminary Mode III paper
(Geubelle et al., 1998), the authors have shown how the viscoelastic behavior of the
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surrounding medium affects the limiting speed of a crack subjected to anti-plane shear
loading conditions. In order to focus on the viscoelastic effect of the surrounding medium,
the failure model was chosen as rate independent. The simple linear cohesive model used
there is now extended to include a dependence on the crack opening velocity /52 as in

(21 )

where Tc denotes the original ("intact") strength of the material, (jc is the critical value of
the crack opening displacement beyond which complete failure is assumed, and k is a non­
dimensional parameter characterizing the rate-dependence of the cohesive failure process.

The failure model (21) is clearly very simple and is introduced here primarily for
illustrative purposes. More complex nonlinear cohesive failure models have been proposed
in the quasi-static case for viscoelastic materials, such as those used by Schapery (1975)
and Knauss and Losi (1993).

The problem simulated hereafter involves a finite size crack of length 2ao located at
the center of a domain X = 16ao discretized by 2048 grid spacings. A uniform constant
tensile load To is suddenly applied along the pre-existing crack as

where H denotes the Heaviside function. The load amplitude To is chosen equal to the initial
strength T, of the surrounding medium, while the critical crack opening displacement
(jc = 0.03. The time step is chosen as c,o!J.t = !J.x/4. Special care was taken in all simulations
to discretize the cohesive zone with at least 25 elements to capture with great precision the
failure process described by (21).

Due to the sudden loading of the crack faces, a stress concentration builds up in the
vicinity of the crack tips, leading to the progressive failure of the adjacent material on the
fracture plane. The evolution of the deformed crack shape is presented in Fig. 7 for the
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Fig. 7. Effect of the rate-dependence of the cohesive failure model on the crack opening displacement
profile for a Mode I crack propagating spontaneously in a linearly elastic material. The rate­
dependent case (k = 2) is presented inverted with respect to the horizontal axis for clarity purposes.

Each curve is separated by 200 time steps.
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Fig. 8. Evolution of the crack tip velocity in the elastic case for various values of k. The evolution
of the tip of the cohesive zone is also indicated for the rate-independent situation (k = 0).

elastic situation (cso! ...... 00) with k = 0 (solid curve) and k = 2 (dashed curve). The time
interval Tbetween successive curves corresponds to 200 time steps, i.e., c"oT ~ Oo4a(). Taking
advantage of the symmetry of the problem, only the right half of the crack is shown,
emphasizing the cusp-like shape of the opened crack, a feature characteristic of cohesive
failure.

As indicated by the spacing between the successive curves, the crack goes through an
acceleration phase before slowing down and eventually arresting. This unsteady motion is
illustrated in Fig. 8, which presents the evolution of the velocity of the crack tip and
cohesive zone tip for various values of k in the elastic situation. The oscillations appearing
at the end of the simulations are associated with the numerical differentiation of very slowly
advancing crack fronts. For the sake of clarity, the velocity of the tip of the cohesive zone
(i.e., the right-most point with non-zero crack opening displacement) is only presented for
the rate-independent situation (k = 0), but its evolution is representative of all simulations:
as expected, the cohesive zone tip starts to propagate almost immediately, while the actual
crack tip (the right-most point for which 152 ~ 15,) remains stationary until sufficient crack
opening is achieved. Then, as observed experimentally (Ravi-Chandar and Knauss, 1984),
the crack tip accelerates very quickly in an attempt to "catch up" with the tip of the cohesive
zone.

As shown in Figs 7 and 8. the rate dependence of the failure process has a strong effect
on the maximum crack speed and on the extent of crack advance. This is to be expected as
the rate-dependent term in (2\) creates an additional energy release mechanism. This fact
is further illustrated in Fig. 9, which presents the evolution of the energy Wreleased in the
failure process and defined by

W(I) = r Tstrength(xJ,t)62(x"t)dx].
J,;oh'70neU)

The energy rate is normalized by c,nG, = 2c,o/Tcbc' which represents the rate of energy that
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Fig. 9. Effect of k on the rate of energy Wdissipated in the cohesive failure process described in
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would be dissipated by a tensile crack propagating steadily at velocity Cd) in a material
characterized by a rate-independent linear cohesive model [eqn (21) with k = 0]. As indi­
cated in Fig. 9, the rate of energy first increases, reaches a maximum and then progressively
decreases with k. This non-monotonic behavior can be explained by the two opposing
effects k has on the energy dissipation mechanism: it increases W by introducing an
additional "viscous" term, but also reduces the crack velocity, and thereby the rate at which
energy is dissipated.

The rate dependence of the failure process can also be observed in the evolution of the
crack opening velocity 15 2 at a point located at a distance 3ao/4 from the initial location of
the crack tip (Fig. 10). As expected, the peak opening velocity decreases with k due to the
combined effects of a decreasing crack velocity and the increasing importance of the viscous
term. It is also interesting to note how the introduction of rate dependence in the cohesive
failure model "stabilizes" the numerical scheme by absorbing the spurious dynamic effects
associated with the step-like advance of the crack front.

Unsurprisingly, many observations obtained in the elastic case are reproduced in the
viscoelastic situation. It is clear that the importance of the viscoelastic behavior of the
surrounding medium depends on the relative value of the relaxation time i' compared to a
characteristic elastodynamic time of the dynamic fracture problem, defined, for example,
as the time needed for a shear wave to travel along the initial crack. In the following
example, we chose csoi'/ao = 1.6 to emphasize the viscoelastic effect. The modulus ratio (
was taken as unity. All the other variables (initial crack length, strength, applied load, ...)
are the same as in the elastic case described above.

As indicated in the evolution of the crack opening profile (Fig. 11), the relaxation of
the surrounding viscoelastic medium affects the spontaneous motion of the Mode I crack
in two ways: firstly, while the crack goes through a similar acceleration and deceleration
phase, its peak velocity value is less in the viscoelastic situation than in the elastic case, as
is apparent from the maximum spacing between the successive curves. Secondly, because
of the relaxation of the surrounding medium, larger crack opening displacement is achieved
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in the viscoelastic case, leading to additional energy available for fracture and, therefore,
to increased crack extension. The effect of the rate dependence of the cohesive failure model
on the pointwise crack opening velocity (Fig. 12) is somewhat similar to that observed in
the elastic situation. The decrease in peak opening velocity with increasing values of k is,
however, less dramatic. as the viscous response of the surrounding viscoelastic medium
prevents the appearance of high opening rates. This effect is especially apparent in the rate­
independent situation (k = 0) : while a singular opening velocity was observed at the passage
of the crack tip (i.e., the end of the cohesive zone) in the elastic case (Fig. 10), the crack
opening velocity is clearly liruited to a finite value in the viscoelastic situation (Fig. 12).

The results presented in this section have only shed some light on the important role
rate dependence plays in dynamic cohesive failure and motivate the need for additional
analytical and numerical work on the topic. This more detailed analysis is, however, beyond
the scope of this paper and will be the subject of our future investigations.

6. CONCLUSION

A numerical method based on a special form of the boundary integral formulation for
2-D and 3-D visco-elastodynamic problems has been presented. This numerical scheme is
derived from an exact spectral representation of the relationship existing between the
stresses and displacements existing on the fracture plane. The algorithm allows for the
simulation of spontaneously propagating planar cracks and faults embedded in a vis­
coelastic material whose mechanical response is modeled with an arbitrary Prony series
representation. The crack can be subjected to any dynamic loading conditions, and spon­
taneous crack propagation is achieved with the aid of a cohesive failure model of arbitrary
complexity.
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Through 2-D and 3-D simulations involving free surfaces and stationary cracks, the
strong viscoelastic effects on the magnitude, shape and speed of surface waves, and on the
dynamic overshoot have been described for the SLS model. A simple rate-dependent
cohesive model has also been formulated and implemented to provide some insight on the
influence of rate effects on the spontaneous propagation and arrest of cracks in an elastic
and a viscoelastic medium.

Acknoll'ledgement--The 3-D simulations presented in this paper have been performed on the CM-5, available at
the National Center for Supercomputing Applications.
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APPENDIX A

Starting with eqn (10), the last relations leading to the spectral formulation (12) are specific to the SLS class
of viscoelastic materials with constant Poisson's ratio. In this first appendix, we extend this result to a general
class of viscoelastic materials, for which the non-synchronous shear and bulk relaxation moduli are expressed
through the conventional (but distinct) Prony series:

'.
/1.(1) = /1, + I I'"e

11,1

\/,

K(t) = K, + I K" e
" I

The Laplace transforms of the corresponding shear and bulk moduli are

(AI)
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where
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". '~KI1 1
X (p) = 1- L-----.

/,'e I K(if~ p+ ],:f~

SI

Po = I' ' + 2.: 1',. and K" = K, + 2.: K"
/1_ I 11-,1

(A2)

are the instantaneous elastic shear and bulk moduli, respectively. The auxiliary operator :J appearing in (3) and
(5) is related to X and. II through

where

l(p) = ;".i(p)+(l-;'ol.!/(p),

4
Ko + 3110

(A3)

Substituting (A2) and (A3) into the square bracketed terms in (7), we obtain the general rorm or R;E( T), Arter
some algebraic manipulations, we can extract the limiting values

where h = ",/II",,, and /7, are non-dimensional material parameters

1 [ \ K" f* P" f*]'7, = ;,,, 2.: --- +(I-;'ol 2.:--~ ,
2 n I Ko fl~ /I -- I liD f;;

(A4)

in which t* is an arbitrarily chosen representative relaxation time.
The final spectral rorm (12) of the viscoelastodynamic equations obtained for the SLS class of viscoelastic

materials is thus also valid for this general class of materials described by (A I), provided that the diagonal matrix
W,; is wri tten as

, lin.
[H ,J =,','". dwg [/1" hI7" '11]'

";'(,1)'

(AS)

Relation (13) obtained in the text for the special SLS class of viscoelastic materials can be recovered from (A4)
and (AS) by imposing iV, = IV;: = L ri = f~ = f!(l +~). t* = t, ancl K,/KII = p,/I'o = ~/(l +~),
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APPENDIX B
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, 1-- , (S+h+h¢)J'(s+b)- 2-t-s-----
_ ,s+b

The convolution kernels for the displacement-based viscoelastodynamic spectral formulation using the SLS
model are given in the Laplace domain by

- 4(s +h)' j~;~\;T~~/:~:2)
CiF(s) = CiJ(s) =

.1" (.I' +h+h¢)'

hbf.

+\'(\+b+b02----I~-(~y:(~+I~:~() -hs+ -to

C:/(s) = C',I(S) =

, r--(.;)' (s+ 1-+h2)--4(\ +h)- I 1+ -----
\j h s+b

,[ , (S+b+bc')J-'(s+b)- 2+s-------- c_I+b he
+ , -- ----:r,::::::-(S +i~~c~)- -s+ --{

.\-(s+h+b¢)- ~ I +\-;1-7,-:

For reference. the Mode III kernel is given by (Geubelle cl al.. 1998)

cI,i(s) = (\/(s) =


